电子课本网 第16页

第16页

信息发布者:
A
B
B
B
$\frac{5}{3}$
$\frac{1}{3}$
$\frac{9}{4}$
$-\frac{1}{4}$
0
$-\frac{1}{6}$
16
解:由一元二次方程的根与系数的关系,得$x_1 + x_2 = 4,$$x_1x_2 = 1。$
$x_1^2x_2 + x_1x_2^2 = x_1x_2(x_1 + x_2)=1×4 = 4$
解:由一元二次方程的根与系数的关系,得$x_1 + x_2 = 4,$$x_1x_2 = 1。$
$x_1^2 + x_2^2=(x_1 + x_2)^2 - 2x_1x_2 = 4^2 - 2×1 = 14$
解:由一元二次方程的根与系数的关系,得$x_1 + x_2 = 4,$$x_1x_2 = 1。$
$(x_1 + x_2)^2\div(\frac{1}{x_1}+\frac{1}{x_2})=(x_1 + x_2)^2\cdot\frac{x_1x_2}{x_1 + x_2}=(x_1 + x_2)x_1x_2 = 4×1 = 4$
(1) 解:$\because$原方程有两个实数根,$\therefore\Delta = 9 - 4(m - 1)= - 4m + 13\geq0,$
移项可得$-4m\geq - 13,$
两边同时除以$-4,$不等号变向,解得$m\leq\frac{13}{4}。$
(2) 解:由一元二次方程的根与系数的关系,得$x_1 + x_2 = - 3,$$x_1x_2 = m - 1。$
$\because 2(x_1 + x_2)+x_1x_2 + 10 = 0,$
$\therefore 2×(-3)+m - 1 + 10 = 0,$
即$-6 + m - 1 + 10 = 0,$
$m + 3 = 0,$解得$m = - 3。$