(1)证明:$\because\Delta = [-(2k + 1)]^2 - 4\times1\times4(k - \frac{1}{2}) = 4k^2 + 4k + 1 - 16k + 8 = 4k^2 - 12k + 9 = (2k - 3)^2\geq0,$$\therefore$这个方程总有两个实数根
(2)解:分两种情况讨论:
①若$b,$$c$为腰,则方程$x^2 - (2k + 1)x + 4(k - \frac{1}{2}) = 0$有两个相等的实数根。$\therefore\Delta = 0,$即$(2k - 3)^2 = 0,$解得$k_1 = k_2 = \frac{3}{2}。$$\therefore$原方程为$x^2 - 4x + 4 = 0,$解得$x_1 = x_2 = 2,$即$b = c = 2。$$\because b + c = a,$$\therefore$这种情况不合题意,舍去。
②若$a$为腰,则$b,$$c$中有一边为腰。$\therefore x = 4$是关于$x$的一元二次方程$x^2 - (2k + 1)x + 4(k - \frac{1}{2}) = 0$的一个根。把$x = 4$代入原方程,得$4^2 - 4(2k + 1) + 4(k - \frac{1}{2}) = 0,$即$16 - 8k - 4 + 4k - 2 = 0,$$10 - 4k = 0,$解得$k = \frac{5}{2}。$$\therefore$原方程为$x^2 - 6x + 8 = 0,$因式分解得$(x - 2)(x - 4) = 0,$解得$x_1 = 2,$$x_2 = 4。$$\because 4 + 2>4,$$\therefore$等腰三角形$ABC$的周长为$2 + 4 + 4 = 10$