解:$(1) $由题图可得,
$S_{1}=a^2-b^2,$$S_{2}=2b^2-ab。$
$ (2) a - b = 8,$$ab = 13,$则
$ \begin {aligned}S_{1}+S_{2}&=a^2-b^2+2b^2-ab\\&=a^2+b^2-ab\\&=(a - b)^2+ab\\&=8^2+13\\&=64 + 13\\&=77\end {aligned}$
$ $所以$S_{1}+S_{2}$的值为$77。$
$ (3) $由题图可得$S_{3}=a^2+b^2-\frac {1}{2}b(a + b)-\frac {1}{2}a^2$
$=\frac {1}{2}(a^2+b^2-ab)$
$ $因为$S_{1}+S_{2}=a^2+b^2-ab = 34,$
所以$S_{3}=\frac {1}{2}×34 = 17。$