解:$(2)$∵$(a + b)^2 = a^2 + 2ab + b^2$
已知$a + b = 10,$$ab = 16$
∴$a^2 + b^2=(a + b)^2 - 2ab = 10^2 - 2×16 = 100 - 32 = 68$
$ (3)$设$8 - x = m,$$x - 2 = n$
则$m + n = 8 - x + x - 2 = 6,$$\mathrm {m^2} + n^2 = 22$
∵$(m + n)^2 =\mathrm {m^2} + 2\ \mathrm {m}n + n^2$
∴$mn=\frac {(m + n)^2 - (\mathrm {m^2} + n^2)}2=\frac {6^2 - 22}2=\frac {36 - 22}2=7$
$ $即这个长方形面积为$7$