电子课本网 第134页

第134页

信息发布者:
$​9\sqrt{2}​$
$解:原式​=3\sqrt{6}+2\sqrt{6}-9×\frac {\sqrt{6}}{18}​$
$​=3\sqrt{6}+2\sqrt{6}-\frac {\sqrt{6}}{2}​$
$​=\frac {9\sqrt{6}}{2}$
$解:原式​=10x²\sqrt{xy}×(5÷15)×\sqrt{\frac {y}{x}÷\frac {x}{y}}​$
$​=10x²\sqrt{xy}×\frac {1}{3}×\frac {y}{x}​$
$​=\frac {10}{3}xy\sqrt{xy}$
$解:原式​=3\sqrt{2}+3\sqrt{5}-2\sqrt{5}-5\sqrt{2}​$
$​=\sqrt{5}-2\sqrt{2}​$
$解:原式​=(4+4\sqrt{10}+10)(14-4\sqrt{10})​$
$​=(14+4\sqrt{10})×(14-4\sqrt{10})​$
$​=14²-(4\sqrt{10})²​$
$​=196-160​$
$​=36​$
$解:原式​=\frac {1+x+1-x}{x+1}×\frac {(x+1)²}{2(x-1)}​$
$​=\frac {2}{x+1}×\frac {(x+1)²}{2(x-1)}​$
$​=\frac {x+1}{x-1}​$
$将​x=\sqrt{2}+1​代入原式$
$原式​=\frac {\sqrt{2}+1+1}{\sqrt{2}+1-1}=1+\sqrt{2}$
$解:三角形的面积​=\frac {1}{2}×(3-\sqrt{2})×(3+\sqrt{2})=\frac {7}{2}{cm}^2;​$
$三角形的斜边长​=\sqrt{{(3-\sqrt{2})}^2+{(3+\sqrt{2})}^2}=\sqrt{22},​$
$∴三角形的周长​=(3-\sqrt{2})+(3+\sqrt{2})+\sqrt{22}=(6+\sqrt{22})\ \mathrm {cm}.​$

$解:​(1)​如图①所示:$
$​AC+CE=\sqrt{{x}^2+25}+\sqrt{{x}^2-16x+65},​$
$当​A、​​C、​​E​在同一直线上,​AC+CE​最小;$
$​(2)​作点​N​关于​x​轴的对称点​N',​连接​MN'​交​x​轴于点​P,​此时​PM+PN​的值最小,等于​MN',​$
$过点​M​作​y​轴的垂线交射线​N'N​于点​A,​如图②所示.$
$​∵N(3,​​2),​$
$​∴N'(3,​​-2).​$
$设直线​MN'​得解析式为​y=kx+b,​$
$则​\{\begin{array}{l}{b=4}\\{3k+b=-2}\end{array},​$
$解得​\{\begin{array}{l}{k=-2}\\{b=4}\end{array}.​$
$​∴y=-2x+4.​$
$当​-2x+4=0​时,​x=2,​$
$​∴P(2,​​0).​$
$在​Rt△AMN'​中,​AM=3,​​AN'=6,​$
$​∴MN'=\sqrt{A{M}^2+AN{'}^2}=\sqrt{{3}^2+{6}^2}=3\sqrt{5}.​$
$​∴PM+PN​最小值为​3\sqrt{5}.​$