$解:(1)如图①所示:$
$AC+CE=\sqrt{{x}^2+25}+\sqrt{{x}^2-16x+65},$
$当A、C、E在同一直线上,AC+CE最小;$
$(2)作点N关于x轴的对称点N',连接MN'交x轴于点P,此时PM+PN的值最小,等于MN',$
$过点M作y轴的垂线交射线N'N于点A,如图②所示.$
$∵N(3,2),$
$∴N'(3,-2).$
$设直线MN'得解析式为y=kx+b,$
$则\{\begin{array}{l}{b=4}\\{3k+b=-2}\end{array},$
$解得\{\begin{array}{l}{k=-2}\\{b=4}\end{array}.$
$∴y=-2x+4.$
$当-2x+4=0时,x=2,$
$∴P(2,0).$
$在Rt△AMN'中,AM=3,AN'=6,$
$∴MN'=\sqrt{A{M}^2+AN{'}^2}=\sqrt{{3}^2+{6}^2}=3\sqrt{5}.$
$∴PM+PN最小值为3\sqrt{5}.$