$解:(1)由图乙可知,当液体体积V_1=200\ \mathrm {cm}³ 时,$
$液体的质量m_1=160g,则液体的密度$
$ρ= \frac{m_1}{V_1}=\frac{160\ \mathrm {g}}{200\ \mathrm {cm}³}=0.8\ \mathrm {g/cm}³.$
$(2)容器内盛满液体时,液体的体积V_2=Sh=50\ \mathrm {cm}²×10\ \mathrm {cm}= 500\ \mathrm {cm}³,$
$此时液体的质量 m_2 =ρV_2 = 0.8\ \mathrm {g/cm}³×500\ \mathrm {cm}³=400\ \mathrm {g},$
$容器的质量m_容= 100\ \mathrm {g},$
$则该容器盛满液体时的总质量m_总= m_容+m_2 =100\ \mathrm {g}+400\ \mathrm {g}=500\ \mathrm {g}.$
$(3)将小球轻轻放入容器中,溢出液体的质量$
$m_溢=m_容+m_球+m_2−m_总'=100\ \mathrm {g}+100\ \mathrm {g}+400\ \mathrm {g}−560\ \mathrm {g}= 40\ \mathrm {g},$
$小球的体积V_球=V_溢=\frac{m_溢}{ρ}=\frac{40\ \mathrm {g}}{0.8\ \mathrm {g/cm}³}=50\ \mathrm {cm}³,$
$则小球的密度ρ_球=\frac{m_球}{V_球}=\frac{100\ \mathrm {g}}{50\ \mathrm {cm}³}= 2\ \mathrm {g/cm}³.$