$解:原式 ={\frac {-a} {{a}^{2}-{b}^{2}}}-{\frac {a-3b} {{a}^{2}-{b}^{2}}}+{\frac {a-2b} {{a}^{2}-{b}^{2}}}$
$\ \ \ \ \ \ \ \ ={\frac {-a-(a-3b)+(a-2b)} {{a}^{2}-{b}^{2}}}$
$\ \ \ \ \ \ \ \ ={\frac {-a+b} {(a+b)(a-b)}}$
$\ \ \ \ \ \ \ \ =-{\frac {1} {a+b}}$