$解:如图:过点N作NE⊥DM,交DM的延长线于点E,$
$由题意得:CN=DE,CD=NE,NC⊥AB,MD⊥AB,$
$MN=5×4=20(m),$
$在Rt△MNE中,∠NME=37°,$
$∴NE=MN•sin37°≈20×0.6=12(m),$
$ME=MN•cos37°≈20×0.8=16(m),$
$∴CD=NE=12m,$
$设DM=x m,∴CN=DE=DM+ME=(x+16)m,$
$在Rt△ADM中,∠AMD=42°,$
$∴AD=DM•tan42°≈0.9x(m),$
$在Rt△ACN中,∠ANC=32°,$
$∴AC=CN•tan32°≈0.625(x+16)m,$
$∴AD=AC+CD=[0.625(x+16)+12]m,$
$∴0.9x=0.625(x+16)+12,解得:x=80,$
$∴DM=80m,$
$在Rt△DBM中,∠DMB=12.7°,$
$∴DB=DM•tan12.7°≈80×0.225=18(m),$
$∴AB=AD+DB=0.9x+18=72+18=90(m),$