$解:过点A作AE⊥CD,垂足为点E,过点B作BF⊥DC,$
$交DC的延长线于点F,过点A作AG⊥BF,交FB于点G$
$则AE=FG,∠BFC=∠AGB=90°$
$∵∠BCD=120°$
$∴∠BCF=180°-∠BCD=60°$
$∴∠FBC=90°-∠BCF=30°$
$在Rt△BCF中,BC=4\ \mathrm {cm}$
$∴BF=BC ·sin {60}°=4×\frac {\sqrt 3}2=2\sqrt 3(\mathrm {cm})$
$∵∠ABC=85°$
$∴∠ABG=180°-∠ABC-∠FBC=65°$
$在Rt△ABG中,AB=6\ \mathrm {cm}$
$∴BG=AB ·cos {65}°≈6×0.423=2.538(\mathrm {cm})$
$∴GF=BG+BF=2.538+2\sqrt 3≈6.002\ \mathrm {cm}$
$故点A到 CD的距离约为6.002\ \mathrm {cm}$