$ 解:∵DE//BC,DF//AC$
$∴四边形CEDF是平行四边形$
$ ∴DE=CF$
$ ∴\frac {AD}{DB}=\frac {AE}{EC},\frac {AB}{AD}=\frac {BC}{DE}$
$ ∴\frac {AD+BD}{AD}=\frac {BF+CF}{DE}$
$ 1+\frac {BD}{AD}=1+\frac {BF}{DF},即\frac {BD}{AD}=\frac {BF}{DE}$
$ ∴\frac {AD}{BD}=\frac {DE}{BF}$
$ ∵DF//AC $
$∴\frac {DF}{AC}=\frac {BF}{BC}$
$ 即(1)(2)(4)成立,(3)不成立$