电子课本网 第137页

第137页

信息发布者:
D
$x=\frac{\sqrt {30}}{2}$
5


$解:(1)方法一:\frac{2}{\sqrt {5}+\sqrt{3}}=\frac{2×(\sqrt{5}-\sqrt {3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\sqrt{5}-\sqrt{3}$
$方法二:\frac{2}{\sqrt {5}+\sqrt{3}}=\frac{(\sqrt{5})^{2}-(\sqrt {3})^{2}}{\sqrt{5}+\sqrt{3}}=\sqrt{5}-\sqrt{3}$
$(2)\frac{3}{\sqrt{11}-2\sqrt {2}}=\frac{3×(\sqrt{11}+2\sqrt {2})}{(\sqrt{11}-2\sqrt {2})(\sqrt{11}+2\sqrt {2})}=\sqrt{11}+2\sqrt {2}$
$\frac{4}{\sqrt{15}-\sqrt{11}}=\frac{4×(\sqrt{15}+\sqrt{11})}{(\sqrt{15}-\sqrt{11})(\sqrt{15}+\sqrt{11})}=\sqrt{15}+ \sqrt{11}$
$∵2\sqrt {2}< \sqrt{15}∴ \sqrt{11}+2\sqrt {2}< \sqrt{15}+ \sqrt{11}$
$∴\frac{3}{\sqrt{11}-2\sqrt {2}}<\frac{4}{\sqrt{15}-\sqrt {11}}$
3
3
$解:(1)\sqrt{15}-\sqrt{14}=\frac{1}{\sqrt{15}+\sqrt{14}}$
$\ \sqrt{14}-\sqrt{13}=\frac{1}{\sqrt{14}+\sqrt {13}}$
$∵ \sqrt{15}> \sqrt {13},∴ \sqrt{15}+\sqrt{14}> \sqrt{14}+ \sqrt{13}$
$∴ \sqrt{15}- \sqrt{14}< \sqrt{14}- \sqrt{13}$
$(2)∵x+1≥0,x-1≥0,∴x≥1$
$∵y= \sqrt{x+1}- \sqrt{x-1}+3=\frac {2}{\sqrt {x+1}+\sqrt {x-1}}+3$
$当x=1时,分母 \sqrt{x+1}+\sqrt{x-1}有最小值\sqrt {2}$
$∴y=\frac {2}{\sqrt {x+1}+\sqrt {x-1}}+3的最大值是\sqrt {2}+3$