$解:(1)y=2x+6可变形为2x-y+6=0$
$即A=2,B=-1,C=6$
$∴点Q(-1,3)到直线2x-y+6=0的距离$
$d=\frac{|2×(-1)-3+6|}{\sqrt{2^{2}+(-1)^{2}}}=\frac{\sqrt{5}}{5}$
$∴点Q(-1,3)直线y=2x+6的距离为\frac{\sqrt {5}}{5}$
$(2))直线x+\sqrt{6}y=5可变形为y=-\frac {\sqrt {6}}{6}x+\frac {5\sqrt {6}}{6}$
$沿y轴向上平移2个单位长度得到另一条直线y=-\frac {\sqrt {6}}{6}x+\frac {5\sqrt {6}}{6}+2$
$当x=0时,y=\frac {5\sqrt {6}}{6}+2,即点(0,\frac{5\sqrt {6}}{6}+2)$
$在直线y=-\frac{\sqrt {6}}{6}x+\frac{5\sqrt {6}}{6}+2上$
$x+ \sqrt{6}=5可变形为x+\sqrt{6}y-5=0$
$∴点(0,\frac{5\sqrt {6}}{6}+2)到直线x+\sqrt {6}y-5=0的距离$
$d=\frac {|1×0+\sqrt {6}×(\frac {5\sqrt {6}}{6}+2)-5|}{\sqrt {1^{2}+(\sqrt {6})^{2}}}=\frac{2\sqrt{42}}{7}$
$∵两直线平行,∴这两条直线之间的距离为\frac{2\sqrt{42}}{7}$