电子课本网 第135页

第135页

信息发布者:
$\frac {3\sqrt {10}}{5}$
$解:原式=-\frac{1}{3}×\sqrt{9y}=- \sqrt{y}$
$解:原式=\sqrt{\frac{2}{45}}÷ \sqrt{\frac{18}{5}}$
$=\sqrt{\frac{2}{45}×\frac{5}{18}}$
$=\frac{1}{9}$
$解:原式=\sqrt{\frac{a^{3}b^{2}}{4}}÷ \sqrt{\frac{16a^{3}}{b}}$
$=\frac{b}{8}\sqrt {b}$
$解:∵x<1,∴y=\frac {|x-1|}{x-1}+3=\frac{-(x-1)}{x-1}+3=2$
$原式=y×\sqrt {3y}×\sqrt{y^{4}}×\sqrt{\frac{1}{y}}=\sqrt{3}y^{3}$
$当y=2时,原式=8\sqrt {3}$
$解:由题意,得\begin{cases}{ 2x-5≥0 }\ \\ { 10-4x≥0 } \end{cases}$
$解得x=\frac{5}{2},∴y=1$
$∵x\sqrt {2x}÷ \sqrt{\frac{x}{y}}=x\sqrt {2y}$
$∴当x=\frac{5}{2},y=1时,原式=\frac{5\sqrt {2}}{2}$
$解:由题意,得9-x≥0, x-6\gt 0,解得6<x≤9$
$∵x为偶数,∴x=8$
$∴原式=\sqrt {\frac {(x+1)^{2}(x-1)^{2}}{(x+1)(x-1)}}$
$=\sqrt {9×7}=3\sqrt {7}$
$解:(1)y=2x+6可变形为2x-y+6=0$
$即A=2,B=-1,C=6$
$∴点Q(-1,3)到直线2x-y+6=0的距离$
$d=\frac{|2×(-1)-3+6|}{\sqrt{2^{2}+(-1)^{2}}}=\frac{\sqrt{5}}{5}$
$∴点Q(-1,3)直线y=2x+6的距离为\frac{\sqrt {5}}{5}$
$(2))直线x+\sqrt{6}y=5可变形为y=-\frac {\sqrt {6}}{6}x+\frac {5\sqrt {6}}{6}$
$沿y轴向上平移2个单位长度得到另一条直线y=-\frac {\sqrt {6}}{6}x+\frac {5\sqrt {6}}{6}+2$
$当x=0时,y=\frac {5\sqrt {6}}{6}+2,即点(0,\frac{5\sqrt {6}}{6}+2)$
$在直线y=-\frac{\sqrt {6}}{6}x+\frac{5\sqrt {6}}{6}+2上$
$x+ \sqrt{6}=5可变形为x+\sqrt{6}y-5=0$
$∴点(0,\frac{5\sqrt {6}}{6}+2)到直线x+\sqrt {6}y-5=0的距离$
$d=\frac {|1×0+\sqrt {6}×(\frac {5\sqrt {6}}{6}+2)-5|}{\sqrt {1^{2}+(\sqrt {6})^{2}}}=\frac{2\sqrt{42}}{7}$
$∵两直线平行,∴这两条直线之间的距离为\frac{2\sqrt{42}}{7}$