$解:(2)\sqrt {n+\frac {1}{n+2}}=(n+1) \sqrt{\frac{1}{n+2}}$
$\ 验证: \sqrt {n+\frac {1}{n+2}}=\sqrt {\frac {(n+1)^{2}}{n+2}}=(n+1)\sqrt {\frac {1}{n+2}}$
$(3)\sqrt{2022+\frac {1}{2024}}× \sqrt{4048}$
$=2023×\sqrt{\frac{1}{2024}}× \sqrt{4048}$
$=2023\sqrt {2}$