电子课本网 第137页

第137页

信息发布者:
$解:(1)原式=\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}×\sqrt{3}-3$
$=\frac{\sqrt{2}}{2}+\frac{3}{2}-3$
$=\frac{\sqrt{2}-3}{2}$
$解:(2)原式=2×(\frac{\sqrt{3}}{2})²+3×\frac{1}{2}-4×1+\frac{\sqrt{3}}{3}×\frac{\sqrt{2}}{2}$
$=2×\frac{3}{4}+3×\frac{1}{2}-4+\frac{\sqrt{6}}{6}$
$=\frac{3}{2}+\frac{3}{2}-4+\frac{\sqrt{6}}{6}$
$=\frac{\sqrt{6}}{6}-1$
$=\frac{\sqrt{6}-6}{6}$
$解:(1)\because \angle C=90^{\circ},\angle B=60^{\circ},$
$\therefore \angle A=30^{\circ},$
$\therefore c=2a,$
$\because b=10,$
$\therefore \left(2a\right)^{2}=a^{2}+10^{2},$
$解得,a=\frac{10\sqrt{3}}{3},$
$\therefore c=\frac{20\sqrt{3}}{3},$
$由上可得,\angle A=30^{\circ},a=\frac{10\sqrt{3}}{3},c=\frac{20\sqrt{3}}{3}.$
$解:(2)\because a+b=3+\sqrt{3},\angle A=30^{\circ},\angle C=90^{\circ},$
$\therefore c=2a,b=3+\sqrt{3}-a,\angle B=60^{\circ},$
$\therefore \left(2a\right)^{2}=a^{2}+(3+\sqrt{3}-a)^{2},$
$解得,a_{1}=\sqrt{3},a_{2}=-3-2\sqrt{3}(舍去),$
$\therefore b=3,c=2\sqrt{3},$
$由上可得,a=\sqrt{3},b=3,c=2\sqrt{3},\angle B=60^{\circ}.$
$解:(1)∵在Rt△ACD中,cos∠ADC=\frac{CD}{AD}=\frac{3}{5},CD=6,\ $
$∴AD=10.$
$∴由勾股定理,得AC= \sqrt{AD²-CD²}=8.$
$∵在 Rt△ABC中,tan B=\frac{AC}{BC}=\frac{2}{3},$
$∴BC=12.$
$∴ 由勾股定理,得 AB= \sqrt{AC²+BC²}=4 \sqrt{13}$
(更多请点击查看作业精灵详解)