$解:(2)\because a+b=3+\sqrt{3},\angle A=30^{\circ},\angle C=90^{\circ},$
$\therefore c=2a,b=3+\sqrt{3}-a,\angle B=60^{\circ},$
$\therefore \left(2a\right)^{2}=a^{2}+(3+\sqrt{3}-a)^{2},$
$解得,a_{1}=\sqrt{3},a_{2}=-3-2\sqrt{3}(舍去),$
$\therefore b=3,c=2\sqrt{3},$
$由上可得,a=\sqrt{3},b=3,c=2\sqrt{3},\angle B=60^{\circ}.$