$解:\text{(1)}设圆锥侧面展开图的圆心角为n°$
$依题意得,\frac{n\pi ×40}{180}=2\pi ×10$
$解得\text{,}n=90$
$∴圆锥侧面展开图的圆心角为90°,$
$侧面积=\pi ×10×40=400\pi \text{(\,\,cm}^2\text{)}$
$\left( 2 \right) 如图所示\text{,}$
$由圆锥的侧面展开图可见,从点A爬到点B的最短路程为线段AB的长度.$
$在Rt△ABS中,∵AS=A'S=40\,\,\text{cm},B为A'S的中点$
$∴BS=\frac{1}{2}A'S=20\,\,\text{cm}$
$∴AB=\sqrt{40^2+20^2}=20\sqrt{5}\,\,\text{cm}$
$∴它所走的最短路程为20\sqrt{5}\,\,\text{cm}.$