$解:(1)过P 作P E⊥A B,P F⊥A C$
$∵AP 平分∠BAC并交 BC于点P$
$∴P E ⊥ A B,P F⊥ A C$
$∴PE=PF$
$∴S_{\triangle ABP}与S_{\triangle ACP}的比 =\frac {1}{2}\ \mathrm {A} B ·P E∶ \frac {1}{2}\ \mathrm {A} C ·P F=A B∶ A C=5∶ 4 $
$(2)∵\frac {S_{\triangle A B P}}{S_{\triangle A C P}}=\frac {\frac {1}{2}\ \mathrm {A} B ×P E}{\frac {1}{2}\ \mathrm {A} C ×P F}=\frac {P B}{P C}$
$∴\frac {P B}{P C}=\frac {A B}{A C}=\frac {5}{4}$
$∴P B=\frac {5}{9}\ \mathrm {B} C=\frac {10}{3}$