解:原式$ =\frac {1}{2} × (1-\frac {1}{3})+\frac {1}{2} ×( \frac {1}{3}-\frac {1}{5})+\frac {1}{2} ×(\frac {1}{5}-\frac {1}{7})$
$+···+\frac {1}{2}×(\frac {1}{2021}-\frac {1}{2023})$
$=\frac {1}{2}× (1-\frac {1}{3}+\frac {1}{3}-\frac {1}{5}+\frac {1}{5}-\frac {1}{7}+···+\frac {1}{2021}-\frac {1}{2023})$
$=\frac {1}{2}×(1-\frac {1}{2023})$
$=\frac {1}{2}×\frac {2022}{2023}$
$= \frac {1011}{2023}$