$证明:(1)∵AC= BC,∴∠A=∠ABC$
$∵△ABC绕点C逆时针旋转α角(0°<α<90°)得到△A_{1}B_{1}C$
$∴∠A_{1}=∠A,A_{1}C=AC= BC,∠ACA_{1}=∠BCB_{1}=α$
$∴∠A_{1}=∠CBD$
$在△CBD与△CA_{1}F 中,\begin{cases}{∠CBD=∠CA_{1}F }\\{BC=A_{1}C} \\ {∠BCD=∠A_{1}CF} \end{cases}$
$∴△CBD≌△CA_{1}F(\mathrm {ASA})$
$(2)∵在△ABC中,AC= BC,∠ACB= 90°$
$∴∠CAB=∠CBA=45°$
$又由旋转的性质得到BC=B_{1}C$
$则∠CB_{1}B=∠CBB_{1}$
$∴∠CB_{1}B=∠CBB_{1}=\frac{180°-α}{2}=90°-\frac{α}{2}$
$∴∠B_{1}BD=∠CBB_{1} -∠CBA=90°-\frac{α}{2}-45°=45°-\frac{α}{2}$
$(3)(更多请点击查看作业精灵详解)$