$证明:(1)如图,过点O作OE⊥AC于点E$
$∵∠ABD=90°,AO平分∠BAC,∴OB=OE$
$∵点O为BD的中点,∴OB=OD$
$∴OE=OD,∴CO平分∠ACD$
$(2)在Rt△ABO和Rt△AEO中$
$\begin{cases}{AO=AO } \\ {OB=OE} \end{cases}$
$∴Rt△ABO≌Rt△AEO(\mathrm {HL}),∴∠AOB=∠AOE$
$同理求出∠COD=∠COE$
$∴∠AOC=∠AOE+∠COE=\frac{1}{2}×180°=90°$
$∴OA⊥OC$
$(3)∵Rt△ABO≌Rt△AEO,∴AB=AE$
$同理可得CD=CE$
$∵AC=AE+CE,∴AB+CD= AC$