$解:(1) 上述变化规律可表示为{({\sqrt {n}})}^{2}+1=n+1,{S}_{n}={\frac {\sqrt {n}} {2}}$
$(2) 由题意可知,{OA}^{2}_{1}=1,{OA}^{2}_{2}={({\sqrt {1}})}^{2}+1=2,$
${OA}^{2}_{3}={({\sqrt {2}})}^{2}+1=3,···,{OA}^{2}_{n}={({\sqrt {n-1}})}^{2}+1=n$
$∴ {OA}^{2}_{10}=10$
$∵ {OA}_{10}>0$
$∴ {OA}_{10}={\sqrt {10}}$
$(3) 由题意可知,{S}^{2}_{1}={\frac {1} {4}},{S}^{2}_{2}={\frac {2} {4}},{S}^{2}_{3}={\frac {3} {4}},···,{S}^{2}_{n}={\frac {n} {4}}$
$∴ {S}^{2}_{1}+{S}^{2}_{2}+{S}^{2}_{3}+···+{S}^{2}_{10}={\frac {1+2+3+···+10} {4}}={\frac {55} {4}}$