解:$(1)b<c<a,$理由如下:
因为$a={2}^{-44444}={({2}^{-4})}^{11111}={(\frac 1 {16})}^{11111},$$b={3}^{-33333}={({3}^{-3})}^{11111}={(\frac 1 {27})}^{11111},$
$c={5}^{-22222}={({5}^{-2})}^{11111}={(\frac 1{25})}^{11111},$
又因为$\frac 1 {27}<\frac 1 {25}<\frac 1 {16},$
所以${(\frac 1 {27})}^{11111}<{(\frac 1 {25})}^{11111}<{(\frac 1 {16})}^{11111},$即$b<c<a$
$(2)①$当$2x+3=1,$则$x=-1;$
②当$2x+3=-1$且$x+2020$为偶数,则$x=-2;$
③当$x+2020=0,$则$x=-2020$
综上所述,当$x=-1$或$-2$或$-2020$时,${(2x+3)}^{x+2020}=1$成立