解:设甲数为$x,$乙数为$y,$丙数为$z$
则$ \begin{cases}{ x+y+z=35 ①}\\{2x=y+5 ②}\\{\dfrac {1} {3}y={\dfrac {1} {2}}z ③}\end{cases}$
由②得$x=\frac {1} {2}(y+5)$
由③得$z=\frac {2} {3}y$
将$ x=\frac {1} {2}(y+5),$$z=\frac {2} {3}y$代入①得$\frac {1} {2}(y+5)+y+\frac {2} {3}y=35$
$y=15$
$x=\frac {1} {2}(y+5)=10;$$z=\frac {2} {3}y=10$
方程组的解为$ {{\begin{cases} {{x=10}} \\{y=15} \\{z=10} \end{cases}}}$
答:甲数是$10,$乙数是$15,$丙数是$10。$