电子课本网 第105页

第105页

信息发布者:
解:原式​$=4\sqrt 2-2\sqrt 3+2\sqrt 3-(3\sqrt 2-3\sqrt 3)$​
​$ =(4-3)×\sqrt 2+(-2+2+3)×\sqrt 3$​
​$ =\sqrt 2+3\sqrt 3$​
解:原式​$=6\sqrt {10}-\frac {\sqrt {10}}5-\frac {\sqrt {10}}5$​
​$ =\frac {28\sqrt {10}}5$​
解:原式​$=4\sqrt 5+3\sqrt 5-2\sqrt 2+4\sqrt 2$​
​$ =7\sqrt 5+2\sqrt 2$​
解:原式​$=3+1+2\sqrt 3-2\sqrt 3+\frac {2\sqrt 3}3$​
​$ =4+\frac {2\sqrt 3}3$​
解:原式​$=\sqrt 6-\sqrt 6+\sqrt 6-2\sqrt 6$​
​$ =-\sqrt 6$​
解:原式​$=14a\sqrt {2a}+7a\sqrt {2a}-4a^2\frac {\sqrt {8a}}{8a}$​
​$ =21a\sqrt {2a}-a\sqrt {2a}$​
​$ =20a\sqrt {2a}$​
解​$ ∶ (1) $​∵​$5 \sqrt {\frac x 5}+\frac 12 \sqrt {20x}+\frac 54 x \sqrt {\frac 4{5x}}$​
​$ =5 ×\frac {\sqrt {5x}}5+\frac 12 ×2 \sqrt {5x}+\frac 54x ×\frac {2 \sqrt {5x}}{5x}$​
​$ =\sqrt {5x}+\sqrt {5x}+\frac 12 \sqrt {5x}$​
​$ =\frac 52 \sqrt {5x}$​
∴这个三角形的周长是​$ \frac 52 \sqrt {5x} $​
​$ (2)$​当​$ x=20 $​时,​$\frac 52 \sqrt {5x}=\frac 52 \sqrt {5×20}=\frac 52 ×10=25$​
解:​$(1) \sqrt {13-2 \sqrt {42}} $​
​$ =\sqrt {7-2 ×\sqrt {7 ×6}+6} $​
​$ =\sqrt {(\sqrt 7)^2-2 ×\sqrt 7 ×\sqrt 6+(\sqrt 6)^2} $​
​$ =\sqrt {(\sqrt 7-\sqrt 6)^2} $​
​$ =\sqrt 7-\sqrt 6; $​
​$ (2)\sqrt {7-\sqrt {40}} $​
​$ =\sqrt {7-2 \sqrt {10}} $​
​$ =\sqrt {5-2 \sqrt {5 ×2}+2} $​
​$ =\sqrt {(\sqrt 5)^2-2 ×\sqrt 5 ×\sqrt 2+(\sqrt 2)^2} $​
​$ =\sqrt {(\sqrt 5-\sqrt 2)^2} $​
​$ =\sqrt 5-\sqrt 2; $​
​$ (3)\sqrt {2-\sqrt 3} $​
​$ =\sqrt {\frac {8-4 \sqrt 3}4} $​
​$ =\sqrt {\frac {8-2 \sqrt {12}}4} $​
​$ =\sqrt {\frac {6-2 \sqrt {6 ×2}+2}4} $​
​$ =\sqrt {\frac {(\sqrt 6)^2-2 ×\sqrt 6 ×\sqrt 2+(\sqrt 2)^2}4} $​
​$ =\sqrt {\frac {(\sqrt 6-\sqrt 2)^2}4} $​
​$ =\frac {\sqrt 6-\sqrt 2}2 . $​