$ \begin{aligned} 解:原式&=(x^2-4y^2)^2-(x^2+4y^2)^2 \\ &=x^4-8x^2y^2+16y^4-(x^4+8x^2y^2+16y^4) \\ &=x^4-8x^2y^2+16y^4-x^4-8x^2y^2-16y^4 \\ &=-16x^2y^2, \\ \end{aligned}$
$ 当x=2,y=-1时, $
$ \begin{aligned} 原式&=-16×2^2×(-1)^2 \\ &=-16×4×1 \\ &=-64. \\ \end{aligned}$