解:$(1)$如图,过点$A$作$AD⊥BC$于点$D$
∵$AB+AC+BC=36\ \mathrm {cm},$$AB=AC=13\ \mathrm {cm}$
∴$BC=10(\ \mathrm {cm})$
∵$AB=AC,$$AD⊥CB$
∴$BD=CD=\frac 12BC=5(\ \mathrm {cm})$
∴$AD=\sqrt {AB^2-BD^2}=\sqrt {13^2-5^2}=12(\ \mathrm {cm})$
∴$tan∠ABC=\frac {AD}{DB}=\frac {12}{5}$
$(2)$过点$C$作$CF⊥AB$于点$F$
∵$S_{△ABC}=\frac {1}{2} · BC · AD=\frac {1}{2} · AB · CF$
∴$CF=\frac {10×12}{13}=\frac {120}{13}(\ \mathrm {cm})$
∴$AF=\sqrt {AC^2-CF^2}=\sqrt {13^2-(\frac {120}{13})^2}=\frac {119}{13}(\ \mathrm {cm})$
∴$tan∠BAC=\frac {CF}{AF}=\frac {\frac {120}{13}}{\frac {119}{13}}=\frac {120}{119}$
即$∠BAC$的正切值为$\frac {120}{119}$